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Abstract

The last ten years have witnessed an increasing interest of the econo-

metrics community in spectral theory. In fact, decomposing the series

evolution in periodic contributions allows a more insightful view of its

structure and on its cyclical behavior at different time scales. In this

paper I concisely broach the issues of cross-spectral analysis and filter-

ing, dwelling in particular upon the windowed filter [15]. In order to

show the usefulness of these tools, I present an application to real data,

namely to US unemployment and inflation. I show how cross spectral

analysis and filtering can be used to find correlation between them (i.e.

the Phillips curve) in some specific frequency bands, even if it does not

appear in raw data.
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A. Iacobucci

1 Introduction

The first appearance of spectral analysis in the study of macroeconomic time series

dates from the middle 1960s, motivated by the requirement of a more insightful

knowledge of the series structure and supported by the contemporaneous progress

in spectral estimation and computation. The first works focused on the problem of

seasonal adjustment procedures (see e.g. [20]) and on the general spectral struc-

ture of economic data [12]. Cross spectral methods were pointed out from the

outset as being important in discovering and interpreting the relationships be-

tween economic variables [11, 13]. After the early years, the range of application

of such analysis was extended to the study of other econometric issues, among

which the controversial trend-cycle separation, the related problem of business

cycles extraction and the analysis of co-movements among series, useful in the

study of international business cycles. It has been clear from the beginning that

spectral analysis is purely descriptive and cannot be straightforwardly used for

forecasting; it is nevertheless a powerful tool for inspecting cyclical phenomena

and highlighting lead-lag relations among series. It also provides a rigorous and

versatile way to define formally and quantitatively each series components and,

by means of filtering, it provides a reliable extraction method. In particular, cross

spectral analysis allows a detailed study of the correlation among series.

In this synthetic overview I will focus on both filtering and cross spectral analy-

sis, which are often two stages of the same procedure. As a matter of fact, besides

the definition and extraction of the different components of a series – typically

trend, business cycle and seasonalities – frequency filters can also be applied to

perform a more targeted and efficient cross spectral analysis.

Time-frequency approaches — which represent the frequency content of a se-

ries, while keeping the time description parameter to give a three-dimensional

time-dependent spectrum — will not be tackled in this paper. This is for essen-

tially two reasons: first, they would require more than a simple section; second,

and more importantly, because evolutionary spectral methods and wavelets are
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suitable when dealing with very long time series, like those found in geophysics,

astrophysics, neurosciences or finance. But their application to short series —

the norm in macroeconomics — is difficult and may give unstable parameter-

dependent results. For such series, traditional spectral analysis is probably more

suitable.

The paper is organized as follows: the first section contains a concise description

of spectral estimation and filtering issues1 together with a recall of discrete Fourier

analysis; in the second section I expose the cross spectral analysis procedure, with

a very short account of the genuinely technical yet central issue of estimation; in

the third section I show an application of the techniques to the US Phillips curve.

Some remarks and the conclusion can be found in the fourth and last section.

2 Spectral Estimation and Filtering: a Brief Review

At a first glance, the overall behavior of time series may be decomposed in three

main parts : long, medium and short run behavior. These three parts are re-

spectively associated with slowly evolving secular movements (the trend), a faster

oscillating part (the business cycles) and a rapidly varying, often irregular, compo-

nent (the seasonality). As it is often the case when no testable a priori hypothesis

on the data generating process (i.e. on the model) is available, this separation is

very phenomenological.

Modern empirical macroeconomics employs an assortment of ad hoc detrend-

ing and smoothing techniques to extract the business cycle, like moving averages

to eliminate the fast components, first-differences to cut out the long term move-

ments, or even the simple subtraction of the linear trend, to cancel the slow drift

variables. Though conceptually not wrong, these methods lack a formal decom-

position of the series and are incapable of giving a definition of the business cycle

based on some required and adjustable characteristics. This is why the Fourier de-

1For an more extensive and detailed treatment the interested reader may refer, among others,

to the celebrated book by Jenkins and Watts [16].
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composition remains one of the most insightful ways of performing the separation

of a signal into different purely periodic components.

Consider a finite series u(j) of length T = N∆t, where N is the number of

data and ∆t the sampling periodicity; the frequency νk = k/(N∆t) and the

time tj = j∆t are indexed by k and j respectively.

The discrete Fourier transform (DFT) U(k) of u(j) and its inverse (IDFT) for

finite series are

U(k) =
1

N

N−1∑
j=0

u(j) e−i2πjk/N , (1)

u(j) =
�(N−1)/2�∑
k=−�N/2�

U(k) ei2πjk/N , (2)

where �·� denotes the largest integer smaller or equal than the operand, k ∈
[−�N/2�, �(N − 1)/2�] and j = 0, . . . , N − 1. Of course, the discretization of

the signal (i.e. its sampling with some finite period ∆t) implies a limitation of

its spectrum to the band ν ∈ [ − (2∆t)−1, (2∆t)−1[, where (2∆t)−1 is the Nyquist

frequency , as frequencies outside that range are folded inside by the sampling (an

effect known as aliasing [7]). On the other hand, the finiteness of the signal in

time implies a discretization of the spectrum, the interval between two successive

values being 2/N .

Equation (1) can only be an approximation of the corresponding real quan-

tity, since it provides only for a finite set of discrete frequencies. The quan-

tity Pu(k) = |U(k)|2 is the signal (power) spectrum and its “natural” estimator

would be Schuster’s periodogram

Pu(k) = ∆t
N−1∑

J=−(N−1)
γuu(J) e−i2πJk/N

= ∆t
N−1∑

J=−(N−1)
γuu(J) cos

2πJk

N
, (3)

where γuu(J) = γuu(−J) = N−1 ∑N−J
j=−(N−J)(u(j)− ū)(u(j +J)− ū) is the standard

sample estimation at lag J of the autocovariance function.
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The periodogram is a real quantity – since the series is real and the autoco-

variance is an even function – and is an asymptotically unbiased estimator of

the theoretical spectrum. Yet, in the case of finite series, it is non-consistent

since the power estimate at the individual frequency fluctuates with N , making

difficult its interpretation. To build a spectral estimator which is more stable –

i.e. has a smaller variance – than Pu(k), we turn to the technique of windowing

(see [8, 16, 21] among others). This technique is employed both in time and in

frequency domain to smoothen all abrupt variations and to minimize the spurious

fluctuations generated every time a series is truncated. The result of windowing

is the smoothed spectrum

Ŝu(k) = ∆t
N−1∑

J=−(N−1)
wM(J) γuu(J) cos

2πJk

N
, (4)

where the autocorrelation function is weighted by the lag window w(j) of width M

[1]. It can be shown that this is equivalent to splitting the series in N/M sub-series

of length M , computing their spectra and taking their mean.

Since Pu(k) and γu(J) are related by DFT (equation 3), equation (4) can also

be written as

Ŝu(k) = ∆t
�(N−1)/2�∑
k′=−�N/2�

Pu(k
′) WM ′(k − k′) , (5)

that is, the convolution of the periodogram Pu(k) with the Fourier transform

of wM(j), the spectral window WM ′(k) of width M ′ = M−1. Thus the smoothed

spectrum at k is nothing but the periodogram seen through a window opened on a

convenient interval around k. Equations (4) and (5) represent two perfectly equiv-

alent ways to compute the smoothed spectrum. Usually, the multiplication, as in

equation (4), is chosen because it is easier to compute. Nevertheless, sometimes

the convolution may be more convenient as we shall see in the section devoted

the windowed filter.

The choice of the lag window width M is performed by choosing a ”reason-

ably” narrow window, i.e. a small initial value of M , and then widening it until a

good spectral stability is obtained, i.e. until the spectral density remains roughly
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unchanged as M increases. Widening the lag window wM(j) corresponds to nar-

rowing the band covered by its Fourier transform, the spectral window WM ′(k).

This is why the procedure is called window-closing [16]. This method allows to

learn progressively about the shape of the spectrum. The initial choice of a wide

bandwidth usually masks some details of the spectrum. By decreasing the band-

width, more significant details can be explored. The choice of M is rather tricky

since it has to be large enough to let all the fundamental details of the spectrum

appear, but not too large, to prevent the generation of spurious peaks.

Windows can be chosen among those already existing in the literature (rect-

angular, triangular, Bartlett, Parzen, Tuckey, Blackman, Hamming,...) or can

be built ad hoc for the specific problem treated. The research of the optimal

window involves a compromise between accuracy and stability of the estimator

(see [8, 16, 21] among others). Moreover, windows are used both in time and

in frequency domain, according to the researcher needs. Both lag windows and

spectral-windows can be used either as multiplying window, like the lag window in

equation (4), or as convolving windows, like the spectral window in equation (5).

Since a convolution in the time domain becomes a multiplication in the frequency

domain and vice versa, a multiplying (convolving) lag window becomes by Fourier

transform a convolving (multiplying) spectral window.

2.1 Filtering

The filtering operation can be performed either in time or in frequency domain

since both approaches are equivalent by

v(j) = h(j) �∗ u(j) ≡
N−1∑
n=0

h(n) u(j − n) mod N ,

=
(N−1)/2∑
k=−N/2

H(k)U(k)e−i2πjk/N . (6)

The previous relation is nothing but the finite discrete version of the convolution

theorem [16], where the linear convolution has been substituted by the circu-
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lar convolution (�∗ ) of length equal to the number of data N . Thus filtering

simply consists in multiplying U(k) by the filter frequency response H(k) or,

equivalently, in convolving the signal u(j) with the filter time response h(j), ob-

tained from H(k) by IDFT. In particular, the band-pass filter selects a frequency

range, so that H(k) = 1 for kl ≤ |k| ≤ kh (pass-band) and zero elsewhere (stop-

band). Of course, the low-pass filter has kl = 0 and selects all frequencies lower

than kh, while the high-pass filter has kh = N/2, correspondent to the Nyquist

frequency νN = 1/(2∆t), and selects all frequencies higher than kl. Notice that

the filter H(k) is not causal in the time domain because it requires future values

as well as past ones (see equation (6)). Asymmetrical (one-sided) filters using only

past values may seem interesting because they allow forecasting [5, 18]; but, unless

special care is taken in designing them — e.g allowing for a complex time response

function — they are dangerous to use because they induce frequency-dependent

phase shifts and may thus change the causality relations among different frequency

components [15, 21]. This would make cross-correlation analysis useless.

A filter which is real in time domain (h(j) = h∗(j)), is symmetric in frequency

domain (H(k) = H(−k)) and vice versa. Therefore, if we want real signals to

remain real after filtering, both time and frequency response functions have to be

real and symmetric, to avoid time and phase shifts. Indeed, it is easy to see that if

the filter H(k) is a complex function different frequencies undergo different phase

shift and timing relations among components are destroyed (dispersive filter).

In the circular convolution the finite signal is replaced by its periodic ver-

sion u(N+j) = u(j mod N), the maximum period length being implicitly assumed

by the Fourier transform to be T = N∆t. This amounts to assuming that the

only frequencies present in the signal are integer multiples of T−1, which is in gen-

eral false and affects the analysis. Indeed the “forced” periodicity introduces an

artificial discontinuity at the edges of the time series, that is reflected by spurious

oscillations in the series DFT, the so-called Gibbs phenomenon. These oscillations

are due to the form of the DFT of a rectangular window of width T = N∆t, which
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Figure 1: Window Functions and Their Frequency Response. The rectangular (dashed
line), Hanning (dotted line) and Hamming (full line) time windows (left panel) and their respective
Fourier transforms (right panel). For the latter, the number of points N = 15 has been chosen
rather small to emphasize the differences. Note in the zoom (right panel, inset) the reduced side
lobe amplitude and leakage of the Hanning and Hamming windows with respect to the rectangular
one, the Hamming window performing better in the first side lobe.

goes like sin(πνT )/(πνT ) (see Figure 1).

The only way to prevent this effect, would be to choose T (or equivalently N)

as a multiple of the largest period that is likely to occur. Unfortunately, this is

feasible only if we have some idea of the frequencies involved in the process and

would in any case entail some loss of data at one or both sample ends. As for the

cutoff frequencies νl = kl/(N∆t) and νh = kh/(N∆t), given the value of N , they

must be chosen to be multiples of T−1, otherwise the filter does not completely

remove the zero frequency component (i.e. the signal mean) and cannot help in

eliminating unit roots (see below).

The time coefficients of an ideal band-pass filter are

h(j) =
sin(2πνhj∆t) − sin(2πνlj∆t)

πj
, j = 1, . . . ,∞ (7)

h0 = 2(νh − νl) ∆t ,

and are obtainable only in the case of infinite series, since this could be the

only way to precisely select the frequency band [νl, νh]. Indeed the filter must

distinguish between frequencies νh (or νl) and νh + dν (or νl − dν) when dν → 0,
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that is, N → ∞. This is why this filter is called “ideal”. In the case of finite

series of length N only the first N coefficients can be calculated

h(j) =
sin(2πkhj/N) − sin(2πklj/N)

πj
, j = 1, . . . , N − 1 (8)

h0 =
2(kh − kl)

N
.

The same result is obtained by multiplying the coefficients (7) by the coefficients

of a rectangular lag window of width N . As we saw above, the effect of this trun-

cation is the Gibbs phenomenon, i.e. the appearance of spurious oscillations in the

frequency response (see Figure 1). This causes the so-called leakage: the compo-

nent at one frequency “contaminates” the neighboring components by modifying

their amplitude. Thus, frequency components which are contiguous to the band

limits, are allowed to leak into the band. Again the application of an appropri-

ate window is the most straightforward way to bypass this problem and obtain a

smoother response, as shown below, in the section devoted to the windowed filter.

Since the Fourier theory and the definition of the spectrum only apply to sta-

tionary time series, it is necessary to detect non-periodic components prior to the

analysis of a series spectrum. First and foremost, it should be established whether

the series has a trend, and, if so, whether the trend is stochastic or deterministic.

Unfortunately there is no direct method to distinguish between the two categories

in the case of raw data with no underlying model, so that the choice may often

depend on the researcher’s insight (see, e.g. [6]). If the trend is deterministic,

e.g. a polynomial function of time, the Fourier basis decomposition is not unique,

since the polynomial term and the periodic one are not orthogonal (a polynomial

term contains all possible frequency components). Therefore, the operations of

detrending and filtering do not commute and the trend must be preliminarily

removed. It is also necessary to remove the artificial discontinuity introduced

at the edges of the interval by the combination of the trend and the periodicity

induced by the Fourier representation. In the case of a linear deterministic trend

— that should be established beforehand by looking at the correlation coefficient
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of the signal with time —, the subtraction of the ordinary least-squares linear

fit from the original series is performed, more or less explicitly, by some filtering

procedures [2, 5, 15].

If the trend is stochastic, and the observed signal is an I(p) process, i.e. the

result of p integrations of a stationary process, it has a spectrum that goes as ν−p

for small ν. Thus, a filter whose frequency response function goes like νp makes

the filtered series stationary. In particular, a ν2-like response is sufficient for the

elimination of two unit roots. The typical way of treating I(p) signals would be to

apply p times the first-difference operator to remove the p unit roots. The main

drawback of this procedure is that the difference operator is an asymmetric filter,

thus it has a complex response HLp(k) = ipeipπk/(N∆t)
(
2 sin πk

N∆t

)p
ei2πkj/N which

introduces a frequency-dependent phase shift. Moreover it amplifies all frequen-

cies larger than one third of the Nyquist frequency (see among others [8, 15]).

This means that p applications of this filter will cause a dramatic amplification

of high-frequency components and thus of noise. Moreover, the filter response

varies almost linearly for small frequencies, so that low-frequency components are

strongly attenuated. It is then very hard to obtain an ideal filter after differenc-

ing, especially when dealing with series with a Granger-shaped [11] spectrum, in

which much of the power occurs at very low frequencies, like those common in

macroeconomics.

2.2 The Windowed Filter

Good approximations of the ideal filter — “good” referring to some optimization

criteria, like the (weighted) difference between the desired and the effective re-

sponse [21] — are the Hodrick-Prescott [9] and the Baxter-King [2] filters2. These

procedures make stationary at least I(2) processes. In particular, the HP-filter

can eliminate up to four unit roots. As for these filters, which are widely known,

2Christiano and Fitzgerald [5] have also designed a band-pass filter, which is more complicated

than the previous ones but, in my opinion, also more questionable (see [15]).
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the reader is referred to the original papers [9, 2]. Here I will focus on a filter re-

cently proposed by Iacobucci and Noullez [15], which is obtained by the technique

of windowing. This filter performs better than the others, since it has minimum

leakage, a significantly flatter frequency response function in the pass-band and

involves no loss of data.

As we have previously seen, the filter obtained by truncation has two main

drawbacks: large amplitudes and a slow decay of the spurious lobes in the re-

sponse function (see Figure 1). These can be ascribed, as previously said, to the

discontinuous shape of the above-mentioned lag window, whose sin(πνT )/(πνT )-

profile Fourier transform disturbs the ideal frequency response. It seems then

natural to try to adjust the shape of the rectangular window to obtain a gain that

goes to zero faster. For this purpose, the “adjusted” window should be chosen to

go to zero continuously with its highest possible order derivatives, at both ends

of the observation interval [15].

Among a certain number of possible windows, Iacobucci and Noullez choose

the Hamming window

wHam(j) = 0.54 + 0.46 cos

(
2πj

N

)
, (9)

which is obtained by a combination of the Hanning window wHan(j) = 1
2 +

1
2 cos

(2πj
N

)
and the rectangular window, to minimize the amplitude of the side

lobes (see Figure 1). Its Fourier transform

WHam(k) =

[
0.08 +

0.92

1 − k2

]
sin(πk)

πk
(10)

decreases like (νT )−1 for large ν, but with a much smaller amplitude than the

rectangular window. Moreover, it has non-zero components only at k = 0 and

k = ±1.

The windowed filter algorithm is the following:

— subtract, if needed, the least-squares line to remove the artificial discontinuity

introduced at the edge of the series by the Fourier representation;
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— compute the discrete Fourier transform of u(j)

U(k) =
1

N

N−1∑
j=0

u(j) e−i2πjk/N , k = 0, . . . , �N/2� ,

where U(k) = U ∗(−k) = U(−k);

— compute the DFT of the Hamming-windowed filtered series

V (k) = [W (k) ∗ H(k)] U(k) =
∑�N/2�

k′=−�N/2� W (k′)H(k − k′)U(k)

= [0.23H(k − 1) + 0.54H(k) + 0.23H(k + 1)]U(k) ,

where k = 0, . . . , �N/2� and H(k) is defined by the frequency range as

H(k) = H(k)ideal ≡
⎧⎪⎪⎨
⎪⎪⎩

1 if νlN∆t ≤ |k| ≤ νhN∆t

0 otherwise
;

— compute the inverse transform

v(j) =

⎡
⎢⎣V (0) +

�N/2�∑
k=1

(
V (k) ei2πjk/N + V (k)∗ e−i2πjk/N

)⎤⎥⎦ , j = 0, . . . , N−1 .

Notice that windowing is performed in the frequency domain by convolution

of the window Fourier transform with the ideal filter response. This is compu-

tationally more convenient than time domain multiplication, since the Hamming

window Fourier transform has only three non-zero components, as I have already

stressed. This procedure ensures both the best possible behavior in the upper

part of the spectrum and the complete removal the signal mean. In the applica-

tion I propose in Section 4, I make use of this filter because of its many advisable

properties compared to the others, namely a flat, well-behaved response function

and the fact that it involves no loss of data.

3 Cross Spectral Analysis: the Bivariate Extension

While univariate spectral analysis allows the detection of movements inside each

series, by means of bivariate spectral analysis it is possible to describe pairs of time
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series in frequency domain, by decomposing their covariance in frequency compo-

nents. In other words, cross spectral analysis can be considered as the frequency

domain equivalent of correlation analysis. The definition of the (smoothed) cross

spectrum, analogously to that of the (smoothed) spectrum (see equation (4)),

is obtained by substituting the cross covariance function for the autocovariance

function. Thus, if we have two time series u1(j) and u2(j) and their crosscovari-

ance γ12(J) = γ21(−J), the cross spectrum is

Ŝ12(k) = ∆t
N−1∑

J=−(N−1)
w(J) γ12(J) e−i2πJk/N = Ĉ12(k) − iQ̂12(k) (11)

and is in general complex , since the crosscovariance is not an even function. The

real part Ĉ12(k) is the cospectrum and the imaginary part Q̂12(k) the quadra-

ture spectrum. Keeping the time-frequency analogy, I introduce the typical cross

spectral quantities and indicate in parentheses the time domain equivalent:

— the coherency spectrum (correlation coefficient)

K̂12(k) =
|Ŝ12(k)|√

Ŝ1(k)Ŝ2(k)
=

√
Ĉ12(k)2 + Q̂12(k)2√

Ŝ1(k)Ŝ2(k)
, (12)

which measures the degree to which one series can be represented as a lin-

ear function of the other (sometimes its square is used, whose time domain

equivalent is the R2);

— the phase spectrum (time-lag)

Φ̂12(k) = arctan

⎛
⎝−Q̂12(k)

Ĉ12(k)

⎞
⎠ , (13)

which measures the phase difference between the frequency components of

the two series: the number of leads (Φ12(k) > 0) or lags (Φ12(k) < 0) of u1(k)

on u2(k) in sampling intervals at frequency νk is given by the so-called stan-

dardized phase (2πνk)
−1Φ12(k);

— the gain (regression coefficient)

Ĝ12(k) =
|Ŝ12(k)|
Ŝ1(k)

, (14)
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Figure 2: US series. Raw series used in the application and the corresponding detrended ones: un-
employment (raw: thin line, detrended: thick line) and inflation (raw: thin dashed line, detrended:
thick dashed line). The data are monthly and cover the period Jan60-Dec01.

which indicates the extent to which the spectrum of u1(k) has been modified

to approximate the corresponding frequency component of u2(k).

The analysis of these three quantities together with the (auto) spectra of each

series and with the amplitude of their cross spectrum gives us an overall view

of the frequency interaction of the two series. As anticipated at the beginning,

filtering procedures are often coupled to cross spectral analysis, either as prelim-

inary or as a consequential step. In fact, it is sometimes evident from spectral

peaks investigation that most of the power is contained in one or more bands. In

particular, many macroeconomic time series (in level) have the typical Granger-

shaped spectrum [12]. Such peaks may leak into nearby components and corrupt

spectral and cross spectral investigation in low-power bands. That is why it may

be advantageous to “pre-filter” the data. On the other hand, filtering can also

be required afterwards when the spectral power concentration occurs in the co-

herency spectrum. This would involve that only some bands are important for the

“interaction” between the series, all the remaining frequency components being

useless.
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√
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4 An Application to the US Phillips Curve

In this section the methods just described are applied to the analysis of the US

Phillips curve in the frequency domain3.

We start by looking at the raw data (Figure 2): neither unemployment nor

inflation show any obvious trend. Nevertheless, since the data cover a period of

42 years, we could expect the existence of a low-frequency trend, unobservable

by simple visual inspection. Moreover, as the data are not seasonally adjusted,

we risk to find an effect on correlation we are not interested in. I thus perform a

filtering operation by means of the windowed filter described above which elim-

inates all periodicities smaller than one year and higher than 21 years, which,

as we saw, may be fictitiously introduced by the Fourier approach. The filtering

operation on this particular band has the effect of detrending and smoothing our

42-years original series and hereafter I will refer to the resulting series as to the

detrended series. Figure 3 reports raw and detrended data autocorrelation func-

tions for both unemployment and inflation and their cross-correlation function.

Only about N/4 lags (10.5 yr) are reported, as suggested by [4], in order to have

3This section builds on [10]. The issue of the Phillips curve historical behavior at different

frequencies is also broached in [14, 17].
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enough lagged products at the highest lag, so that a reasonably accurate average

is obtained. It may be seen that autocorrelation functions (left panel) drop to

zero more quickly in the detrended than in the raw series. Furthermore a sort of

oscillating behavior emerges in the case of detrended inflation, while it was absent

in the raw case. We also observe significant negative autocorrelation values for

both series which appear only after the detrending operation. These values cor-

respond approximatively to lags between 3 and 7.5 years for unemployment and

between 2.5 and 4 years and 7 and 9 years for inflation, the intermediate values

being not significantly different from zero. Finally and more crucially, we notice

that following the detrending operation a negative cross correlation (right panel)

emerges in the short-to-medium run (0 to 36 months lag), which was absent in

the raw case. This justifies our fears about the “hiding” effect of low-frequency

high-power spectral components on short-to-medium term correlation visibility.

The negative cross correlation between the detrended series means that: (a) in

the (wide) band of frequency ν ∈ [21−1, 1] yr−1 that we extracted it does exist a

contemporaneous Phillips curve, as shown by the negative cross correlation at lag

zero, which did not appear by the sole visual inspection of raw data; (b) there is

a retarded negative effect of unemployment on inflation in this frequency range,

which reaches its maximum at about 1 year, meaning that a rise in inflation will

follow of an year a fall in unemployment, in other words a delayed Phillips curve.

Obviously, we are not able to establish a lead-lag relation by the simple study

of the cross-correlation function. In fact, if we look at its negative lags part, we

find a positive correlation between inflation and retarded unemployment, which

reaches its maximum at a 2-year lag. This implies a positively sloped Phillips

curve. We would need additional information to establish which of the two is

leading the other. Cross spectral analysis (Figure 4) can answer this purpose and

more. Notice that the residual spectral power at frequencies lower than (21 yr)−1

is an effect of the smoothing. The same happens to the other quantities, thus their

value outside the band should be disregarded. The parameter M was set to 140
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Figure 4: Cross spectral analysis. Main quantities relative to US unemployment and inflation:
auto and cospectrum (top left), standardized phase (top tight), coherency (bottom left) and gain
(bottom right). For a greater legibility, on abscissae I report the period, which is the inverse of the
frequency and is expressed in years.

after the preliminary window closing procedure. We notice (top left panel) that

the spectrum of inflation is higher than that of unemployment, confirming the for-

mer’s higher variance. Moreover, inflation shows two non-harmonic peaks at the

periodicities ν−1 of 14 and 6 years, while the only unemployment spectral peak is

at 10.5 years. The cospectrum shows a concentration of the two series covariance

approximatively in the periodicity band [21, 6] yr. In point of the standardized

phase (top right panel), the plot shows a leading behavior of unemployment on

inflation in the same band ([21, 6] yr). This is consistent with the findings of

the cross correlation inspection, which showed a negative correlation between un-

employment and lagged inflation (Figure 3). The leads (lags) of unemployment
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Figure 5: Phillips curves. Raw data (left panel), detrended (right panel) and 14 − 3 yr filtered

US Phillips curves, with their corresponding OLS line. The raw data curve has been translated

to the origin by subtracting from both series their means.

(inflation) components vary from a maximum of about 2 months and a half for

the ν−1 = 21 yr component to zero (i.e. coincident) for the ν−1 = 6 yr component.

For periodicities in the band [6, 3] yr, we remark a negative phase, which would

imply a leading behavior of inflation on unemployment. Nevertheless, the cospec-

trum has very low values in the second half of this band, where the phase is more

significantly different from zero. We may thus conclude that these components

do not account for much of the series covariance and that the prevailing trend is

the former, i.e. unemployment leading inflation. The coherency plot (bottom left

panel) shows a maximum frequency domain correlation at 5.25 yr, suggesting that

filtering around this frequency would yield a more pronounced Phillips relation.

The same information is given by the gain function (bottom right panel), whose

maximum is found at the same frequency as the coherency.

Regarding the overall behavior of coherency, gain and phase, there is a transi-

tion at ν−1 = 3 yr. In fact, while their behavior for ν−1 < 3 yr can be considered

reliable for cross spectral analysis, their non negligible value for ν−1 > 3 yr might

be the effect of some divergence (little denominators), since the cospectrum and

the individual spectra above this value are nearly zero. To see more clearly at

high frequencies, that part of the spectrum should be studied separately, that is

we should extract the frequency components corresponding to the band [3, 1] yr

or [3, 0.5] yr and perform the cross spectral analysis again. The interested reader
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is referred to [10].

Turning to the Phillips curve analysis, Figure 5 shows the raw data, the de-

trended and the 14− 3 yr filtered curve. The first thing we notice is that the raw

curve OLS line has a positive slope of 0.54 (tStudent = 6.30), with a low correlation

coefficient of 0.27. If we look at the detrended curve, the slope becomes nega-

tive (−0.39 with tStudent = −4.9), with a lower correlation coefficient of −0.21.

This is in agreement with the information given by the cross correlation (Fig-

ure 3). Finally, I filtered both unemployment and inflation on the band [14, 3] yr,

containing the coherency maximum and indeed we find a negative slope of −0.66

with the highest correlation coefficient ρ = −0.38 (tStudent = −9.32). Thus, cross

spectral analysis guided us in finding the band where we can detect a stronger

Phillips relation.

5 Conclusion

This paper highlighted the main features of spectral analysis and their practical

application. After a general theoretical introduction, I approached the issue of

filtering for the extraction of particular components, mostly those related to the

business cycle. In fact one of the advantages of the method is that it allows a

quantitative definition of the cycle, and the extraction of long, medium or short

term components, according to the researcher’s wish. Then, I sketched the the-

ory and practice of cross spectral analysis introducing some typical concepts, like

coherency and phase spectrum, which may provide some essential information,

complementary to that given by time domain methods. Finally, I applied these

tools to the study of US Phillips curve. Thanks to the combined analysis, I man-

aged to show that a Phillips relation arises between inflation and unemployment,

at the typical business cycle components ([14, 6] yr), even if there is no hint of

it in raw data. Moreover, by means of phase spectrum analysis, I showed that

unemployment leads inflation, the latter being delayed of about one year.
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To conclude I would like to spend some words in favor of the fact-without

theory technique of filtering, which, after a period of great glamour, has lately

come under attack. It goes without saying that as all other methods in time

series analysis it has limits which have to be known and thoroughly explored to

ensure a proper utilization; and, as any other method or model, it can not be

expected to be universal.

A major limit of this approach is that it is impossible to say anything about

the evolution in time of the frequency content of the series, since the spectrum

depends on the frequency but not on time. Thus, if a particular frequency com-

ponent remains “switched on” only during a subsample, it is impossible to detect

this interval by means of the inspection of sole series spectrum. To keep the

information about time-localization some other kind of analysis is required, like

time-frequency or wavelets, which, as we said, are tricky to apply to short series

and for this reason may give unstable results.

Nevertheless, some other criticisms seem to be off the mark. For example,

it has been often argued that spectral analysis does not allow to disentangle

the data generating process of a series from its spectrum (see,e.g. [3, 19]) —

typically to separate the business cycle from the trend in a model where the

latter is nonstationary, e.g. an I(1) process [3, 19]. But in general, this would

require a separation within the individual frequency components, something that

this purely descriptive method is not meant to do. It would be like dismissing

correlation analysis because it fails to detect causality between two variables.

In other words, the tool is far from being perfect, but it has been too hastily

dismissed by some quarters with unwarranted arguments.
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